Ранние стадии болезни Паркинсона: особенности диагностики и терапии

Раздел только для специалистов в сфере медицины, фармации и здравоохранения!

 1845

Ранние стадии болезни Паркинсона: особенности диагностики и терапии

Журнал "Медицинский совет" №18, 2019г.

DOI: https://doi.org/10.21518/2079-701X-2019-18-61-70

 А.А. Пилипович, ORCID 000-0001-7416-9050, e-mail: aapilipovich@mail.ruИнститут профессионального образования Первого Московского государственного медицинского университета имени И.М. Сеченова

Болезнь Паркинсона (БП) – второе по частоте нейродегенеративное заболевание, характеризующееся неуклонным прогрессированием и приводящее к стойкой инвалидизации. Известно, что между началом отмирания клеток в определенных структурах нервной системы и появлением клинических признаков заболевания может пройти более 10 лет, и за это время утрачивается большая часть дофаминергических нейронов. Выявление пациентов в период между предполагаемым началом потери дофаминергических клеток и появлением клинического паркинсонизма может иметь решающее значение для разработки эффективных стратегий нейропротективного лечения. В настоящее время ученые всего мира уделяют особое внимание поиску надежных клинических, нейровизуализационных, молекулярных маркеров, которые могли бы помочь диагностировать БП на ранних стадиях, отличать ее от других патологических состояний, отслеживать прогрессирование, выявлять положительный ответ терапии. В статье сделан обзор современного состояния проблемы ранней диагностики и поиска ранних клинических признаков, доклинических биохимических, генетических и нейровизуализационных маркеров БП, приведены основные современные направления терапии БП: разобрана симптоматическая фармакотерапия, восполняющая дофаминергический дефицит и способная сгладить двигательные и некоторые немоторные симптомы паркинсонизма, а также некоторые возможности нейропротекторного лечения. В частности, подробно описана роль амантадинов, приводится зарубежный и отечественный опыт их применения в качестве монотерапии и комплексного лечения БП. Дается разбор клинического случая терапии начальной стадии БП препаратом ПК-Мерц.

Для цитирования: Пилипович А.А. Ранние стадии болезни Паркинсона: особенности диагностики и терапии. Медицинский Совет. 2019;(18):61-70. https://doi.org/10.21518/2079-701X-2019-18-61-70

Конфликт интересов: авторы заявляют об отсутствии конфликта интересов.

Early stages of Parkinson’s disease: aspects of the diagnosis and therapy

 Anna А. Pilipovich, ORCID 000-0001-7416-9050, e-mail: aapilipovich@mail.ru Institute for Professional Education, I.M. Sechenov First Moscow State Medical University

Parkinson’s disease (PD) is the second most common neurodegenerative disease that is characterized by steady progression and results into persistent disability. It has been known that more than 10 years may elapse between the onset of cell death in certain structures of the nervous system and the onset of clinical symptoms of the disease, and most of the dopaminergic neurons are lost during this period. The identification of patients in the period between the expected onset of dopaminergic cell loss and the onset of clinical parkinsonism may be crucial for the development of effective neuroprotective treatment strategies. The scientists around the world are currently paying special attention to the search for reliable clinical, neuroimaging and molecular markers that could help diagnose PD in the early stages, distinguish it from other pathological conditions, track progression, and detect a positive response to therapy. The article provides an overview of the status update on the problem of early diagnosis and search for early clinical signs, preclinical biochemical, genetic and neuroimaging markers of PD, the main modern directions of PD therapy. Symptomatic pharmacotherapy, which compensates for dopaminergic deficiency and is able to alleviate motor and some nonmotor symptoms of parkinsonism, as well as some neuroprotective treatment options, have been analysed. Among other factors, the role of amantidines is described in detail. The foreign and domestic experience of their use as monotherapy and complex treatment of PD is presented. The author provides an analysis of the clinical case of PK-Merz therapy of the initial stage of PD.

For citation: Pilipovich A.A. Early stages of Parkinson’s disease: aspects of the diagnosis and therapy. Medical Council. 2019;(18):61-70. (In Russ.) https://doi.org/10.21518/2079-701X-2019-18-61-70

Conflict of interest: The authors declare no conflict of interest.

Загрузить файл в формате PDF


Список литературы

  1. El-Agnaf O.M.A., Salem S.A., Paleologou K.E., Curran M.D., Gibson M.J., Court J.A. et al. Detection of oligomeric forms of (-synuclein protein in human plasma as a potential biomarker for Parkinson’s disease. FASEB J. 2006;20:419-425. Available at: https://wwwhttp://fasebj.org/doi/10.1096/fj.03-1449com.
  2. Schmid A.W., Fauvet B., Moniatte M., Lashuel H.A. Alpha-synuclein post-translational modifications as potential biomarkers for Parkinson disease and other synucleinopathies. Mol Cell Proteomics. 2013;12:3543-3558. Available at: https://www.mcponline.org/content/12/12/3543.
  3. Braak H., Del Tredici K., Rüb U., de Vos R.A., Jansen Steur E.N., Braak E. Staging of brain pathology related to sporadic Parkinson’s disease. Neurobiol Aging. 2003;24:197-211. https://doi.org/10.1016/S0197-4580(02)00065-9.
  4. Parkkinen L., Kauppinen T., Pirttila T., Autere J.M., Alafuzoff I. Alpha-synuclein pathology does not predict extrapyramidal symptoms or dementia. Ann Neurol. 2005;57:82-91. https://doi.org/10.1002/ana.20321.
  5. Siderowf A., Aarsland D., Mollenhauer B., Goldman J. G., Ravina B. Biomarkers for cognitive impairment in Lewy body disorders: status and relevance for clinical trials. Mov. Disord. 2018;33:528-536. https://doi.org/10.1002/ mds.27355.
  6. Angot E., Brundin P. Dissecting the potential molecular mechanisms underlying alphasynuclein cell-to-cell transfer in Parkinson’s disease. Parkinsonism Relat Disord. 2009;15(Suppl. 3):143-147. https://doi.org/10.1016/ S1353-8020(09)70802-8.
  7. Steiner J.A., Quansah E., Brundin P. The concept of alpha-synuclein as a prion-like protein: ten years after. Cell Tissue Res. 2018;373:161-173. https://doi.org/10.1007/s00441-018-2814-1.
  8. Luk K.C., Kehm V., Carroll J., Zhang B., O’Brien P., Trojanowski J. Q. et al. Pathological α-synuclein transmission initiates parkinsonlike neurodegeneration in non-transgenic mice. Science. 2012;16:949-953. https://doi.org/10.1126/ science.1227157.
  9. Bernis M.E., Babila J.T., Breid S., Wüsten K.A., Wüllner U., Tamgüney G. Prion-like propagation of human brain-derived alpha-synuclein in transgenic mice expressing human wild-type alpha-synuclein. Acta Neuropathol. Commun. 2015;3:75. https://doi.org/10.1186/s40478-015-0254-7.
  10. Liddle R.A. Parkinson’s disease from the gut. Brain Res. 2018;1693(Pt B):201-206. https://doi.org/: 10.1016/j.brainres.2018.01.010.
  11. Imperatore R., Palomba L., Cristino L. Role of Orexin-a in hypertension and obesity. Curr. Hypertens. Rep. 2017;19:34. https://doi.org/10.1007/ s11906-017-0729-y.
  12. Fronczek R., Overeem S., Lee S. Y., Hegeman I. M., van Pelt J., van Duinen S. G. et al. Hypocretin (orexin) loss in Parkinson’s disease. Brain. 2007;130:1577-1585. https://doi.org/10.1093/ brain/awm090.
  13. Watanabe M., Maemura K., Kanbara K., Tamayama T., Hayasaki H. GABA and GABA receptors in the central nervous system and other organs. Int Rev Cytol. 2002;213:1-47. https://doi.org/10.1016/S0074-7696(02)13011-7.
  14. Takahashi Y., Kanbayashi T., Hoshikawa M., Imanishi A., Sagawa Y., Tsutsui K., et al. Relationship of orexin (hypocretin) system and astrocyte activation in Parkinson’s disease with hypersomnolence. Sleep Biol Rhythms. 2015;13:252-260. https://doi.org/10.1111/sbr.12112
  15. Clairembault T., Kamphuis W., Leclair-Visonneau L., Rolli-Derkinderen M., Coron E., Neunlist M. et al. Enteric GFAP expression and phosphorylation in Parkinson’s disease. J Neurochem. 2014;130:805-815. https://doi.org/10.1111/jnc.12742.
  16. Rappold P.M., Tieu K. Astrocytes and therapeutics for Parkinson’s disease. Neurotherapeutics. 2010;7:413-423. https://doi.org/10.1016/j.nurt.2010.07.001.
  17. Kikuchi Y., Yasuhara T., Agari T., Kondo A., Kuramoto S., Kameda M., et al. Urinary 8-OHdG elevations in a partial lesion rat model of Parkinson’s disease correlate with behavioral symptoms and nigrostriatal dopaminergic depletion. J Cell Physiol. 2011;226(5):1390-1398. https://doi.org/10.1002/ jcp.22467.
  18. 18. Simon D.K., Simuni T., Elm J., Clark-Matott J., Graebner A.K., Baker L. Peripheral biomarkers of Parkinson’s disease progression and Pioglitazone effects. J Parkinsons Dis. 2015;5(4):731-6. https://doi.org/10.3233/JPD-150666.
  19. Shadrina M.I., Slominsky P.A., Limborska S.A. Molecular Mechanisms of Pathogenesis of Parkinson’s disease. Int Rev Cell Mol Biol. 2010;281:229-266. https://doi.org/10.1016/S19376448(10)81006-8.
  20. Ciechanover A., Kwon Y.T. Degradation of misfolded proteins in neurodegenerative diseases: therapeutic targets and strategies. Exp Mol Med. 2015;47:e147. https://doi.org/10.1038/ emm.2014.117.
  21. Bentea E., Verbruggen L., Massie A. The proteasome inhibition model of Parkinson’s disease. J Parkinsons Dis. 2017;7(1):31-63. https://doi.org/10.3233/JPD-160921.
  22. Blandini F., Sinforiani E., Pacchetti C., Samuele A., Bazzini E., Zangaglia R. Peripheral proteasome and caspase activity in Parkinson disease and Alzheimer disease. Neurology. 2006;66(4):529-34. https://doi.org/10.1212/01. wnl.0000198511.09968.b3.
  23. Vermeiren Y., De Deyn P.P. Targeting the norepinephrinergic system in Parkinson’s disease and related disorders: the locus coeruleus story. Neurochem Int. 2017;102:22-32. https://doi.org/10.1016/j.neuint.2016.11.009.
  24. Van der Zee S., Vermeiren Y., Fransen E., Van Dam D., Aerts T., Gerritsen M. J. et al. Monoaminergic markers across the cognitive spectrum of Lewy body disease. J Parkinsons Dis. 2018;8(1):71-84. https://doi.org/10.3233/JPD-171228.
  25. Goldstein D.S., Holmes C., Lopez G.J., Wu T., Sharabi Y. Cerebrospinal fluid biomarkers of central dopamine deficiency predict Parkinson’s disease. Parkinsonism Relat Disord. 2018;50:108112. https://doi.org/:10.1016/j.parkreldis.2018.02.023.
  26. Emamzadeh F.N. Alpha-synuclein structure, functions, and interactions. J Res Med Sci. 2016;21:29. https://doi.org/10.4103/1735-1995.181989.
  27. Surguchov A. Intracellular dynamics of synucleins: here, there and everywhere. Int Rev Cell Mol Biol. 2015;320:103-69. https://doi.org/10.1016/bs. ircmb.2015.07.007.
  28. Venda L.L., Cragg S.J., Buchman V.L., WadeMartins R. α-Synuclein and dopamine at the crossroads of Parkinson’s disease. Trends Neurosci. 2010;33(12):559-68. https://doi.org/10.1016/j. tins.2010.09.004.
  29. Hong Z., Shi M., Chung K.A., Quinn J.F., Peskind E.R., Galasko D., Jankovic J., Zabetian C.P., Leverenz J.B., Baird G., Montine T.J., Hancock A.M., Hwang H., Pan C., Bradner J., Kang U.J., Jensen P.H., Zhang J. DJ-1 and alpha-synuclein in human cerebrospinal fluid as biomarkers of Parkinson’s disease. Brain. 2010;133(Pt 3):713726. https://doi.org/10.1093/brain/awq008.
  30. Masuda-Suzukake M., Nonaka T., Hosokawa M., Oikawa T., Arai T., Akiyama H., Mann D.M., Hasegawa M. Prion-like spreading of pathological α-synuclein in brain. Brain. 2013;136(Pt 4):1128-1138. https://doi.org/10.1093/brain/awt037.
  31. Sui Y.T., Bullock K.M., Erickson M.A., Zhang J., Banks W.A. Alpha synuclein is transported into and out of the brain by the blood-brain barrier. Peptides. 2014;62:197-202. https://doi.org/10.1016/j. peptides.2014.09.018.
  32. Foulds P.G., Mitchell J.D., Parker A., Turner R., Green G., Diggle P., Hasegawa M., Taylor M., Mann D., Allsop D. Phosphorylated α-synuclein can be detected in blood plasma and is potentially a useful biomarker for Parkinson’s disease. FASEB J. 2011;25(12):4127-4137. https://doi.org/10.1096/fj.10-179192.
  33. Emamzadeh F.N. Role of Apolipoproteins and α-Synuclein in Parkinson’s Disease. J Mol Neurosci. 2017;62(3-4):344-355. https://doi.org/10.1007/ s12031-017-0942-9.
  34. Swanson C.R., Berlyand Y., Xie S.X., Alcalay R.N., Chahine L.M., Chen-Plotkin A.S. Plasma apolipoprotein A1 associates with age at onset and motor severity in early Parkinson’s disease patients. Mov Disord. 2015;30(12):1648-1656. https://doi.org/10.1002/mds.26290.
  35. Vitali C., Wellington C.L., Calabresi L. HDL and cholesterol handling in the brain. Cardiovasc Res. 2014;103(3):405-413. https://doi.org/10.1093/cvr/ cvu148.
  36. Dos Santos M.C.T., Barreto-Sanz M.A., Correia B.R.S., Bell R., Widnall C., Perez L.T., Berteau C., Schulte C., Scheller D., Berg D., Maetzler W., Galante P.A.F., Nogueira da Costa A. miRNAbased signatures in cerebrospinal fluid as potential diagnostic tools for early stage Parkinson’s disease. Oncotarget. 2018;9(25):17455-17465. https://doi.org/10.18632/oncotarget.24736.
  37. Arshad A.R., Sulaiman S.A., Saperi A.A., Jamal R., Mohamed Ibrahim N., Abdul Murad N.A. MicroRNAs and Target Genes As Biomarkers for the Diagnosis of Early Onset of Parkinson Disease. Front Mol Neurosci. 2017;10:352. https://doi.org/10.3389/fnmol.2017.00352.
  38. Dos Santos M.C.T., Barreto-Sanz M.A., Correia B.R.S., Bell R., Widnall C., Perez L.T., Berteau C., Schulte C., Scheller D., Berg D., Maetzler W., Galante P.A.F., Nogueira da Costa A. miRNAbased signatures in cerebrospinal fluid as potential diagnostic tools for early stage Parkinson’s disease. Oncotarget. 2018;9(25):17455-17465. https://doi.org/10.18632/oncotarget.24736.
  39. Henchcliffe C., Shungu D.C., Mao X., Huang C., Nirenberg M.J., Jenkins B.G., Beal M.F. Multinuclear magnetic resonance spectroscopy for in vivo assessment of mitochondrial dysfunction in Parkinson’s disease. Ann N Y Acad Sci. 2008;1147:206-220. https://doi.org/10.1196/annals.1427.037 .
  40. Seraji-Bozorgzad N., Bao F., George E., Krstevska S., Gorden V., Chorostecki J., Santiago C., Zak I., Caon C., Khan O. Longitudinal study of the substantia nigra in Parkinson disease: A high-field (1) H-MR spectroscopy imaging study. Mov Disord. 2015;30(10):1400-1404. https://doi.org/10.1002/mds.26323.
  41. Havelund J.F., Heegaard N.H.H., Færgeman N.J.K., Gramsbergen J.B. Biomarker Research in Parkinson’s Disease Using Metabolite Profiling. Metabolites. 2017;7(3). https://doi.org/10.3390/ metabo7030042.
  42. Skoloudík D., Jelínková M., Blahuta J., Cermák P., Soukup T., Bártová P., Langová K., Herzig R. Transcranial sonography of the substantia nigra: digital image analysis. AJNR Am J Neuroradiol. 2014;35(12):2273-2278. https://doi.org/10.3174/ajnr.A4049.
  43. Hare D., Ayton S., Bush A., Lei P. A delicate balance: Iron metabolism and diseases of the brain. Front Aging Neurosci. 2013;5:34. https://doi.org/10.3389/fnagi.2013.00034.
  44. Saeed U., Compagnone J., Aviv R.I., Strafella A.P., Black S.E., Lang A.E., Masellis M. Imaging biomarkers in Parkinson’s disease and Parkinsonian syndromes: current and emerging concepts. Transl Neurodegener. 2017;6:8. https://doi.org/10.1186/s40035-017-0076-6.
  45. Chung E.J., Kim E.G., Bae J.S., Eun C.K., Lee K.S., Oh M., Kim S.J. Usefulness of DiffusionWeighted MRI for Differentiation between Parkinson’s Disease and Parkinson Variant of Multiple System Atrophy. J Mov Disord. 2009;2(2):64-68. https://doi.org/10.14802/jmd.09017.
  46. Brooks D.J. Molecular imaging of dopamine transporters. Ageing Res Rev. 2016;30:14-121. https://doi.org/10.1016/j.arr.2015.12.009.
  47. Niethammer M., Feigin A., Eidelberg D. Functional neuroimaging in Parkinson’s disease. Cold Spring Harb Perspect Med. 2012;2(5):a009274. https://doi.org/10.1101/cshperspect. a009274.
  48. Emamzadeh F.N., Surguchov A. Parkinson’s Disease: Biomarkers, Treatment, and Risk Factors. Front Neurosci. 2018;12:612. https://doi.org/10.3389/fnins.2018.00612.
  49. Goldstein D.S. Sympathetic neuroimaging. Handb Clin Neurol. 2013;117:365-70. https://doi.org/10.1016/B978-0-444-53491-0.00029-8.
  50. Valdés P., Schneider B.L. Gene Therapy: A Promising Approach for Neuroprotection in Parkinson’s Disease? Front Neuroanat. 2016;10:123. https://doi.org/10.3389/fnana.2016.00123.
  51. Gold B.G., Nutt J.G. Neuroimmunophilin ligands in the treatment of Parkinson’s disease. Curr Opin Pharmacol. 2002;2(1):82-86. https://doi.org/10.1016/S1471-4892(01)00125-4.
  52. Левин О.С. (ред.). Экстрапирамидные расстройства вчера, сегодня, завтра. 2-е изд. М.; 2015. Режим доступа: http://www.03book. ru/upload/iblock/9f6/9f633b02367a77f7443fa f5b75c4d06d.pdf.
  53. Galvez-Jimenez N., Fernandez H.H., Espay A.J., Fox S.H. Parkinson’s Disease: Current and Future Therapeutics and Clinical Trials. Cambridge University Press; 2016. Available at: https:// http://pdfs.semanticscholar.org/813e/879e530c8915 8b1c527f7293f99adb577474.pdf.
  54. Rascol O., Fitzer Attas C.J., Hauser R. et al. A double blind, delayed start trial of rasagiline in Parkinson’s disease (the ADAGIO study): prespecified and posthoc analyses of the need for additional therapies, changes in UPDRS scores, and nonmotor outcomes. Lancet Neurol. 2011;10:415-423. https://doi.org/10.1016/ S1474-4422(11)70073-4.
  55. Grimes D., Gordon J., Snelgrove B., Lim-Carter I., Fon E., Martin W., Wieler M., Suchowersky O., Rajput A., Lafontaine A.L., Stoessl J., Moro E., Schoffer K., Miyasaki J., Hobson D., Mahmoudi M., Fox S., Postuma R., Kumar H., Jog M. Canadian guidelines on Parkinson’s disease. Can J Neurol Sci. 2012;4(39):S1-S30. 
  56. Available at: http://www.parkinsonclinicalguidelines.ca sites/default/files/PD_Guidelines_2012.pdf.
  57. Grosset D., Antonini A., Caneci M., Pezzoli G., Lees A., Shaw K., Cubo E., Martinez-Martin P., Rascol O., Negre-Pages L., Senard A., Schwarz J., Strecker K., Reichmann H., Storch A., Löhle C., Stocchi F., Grosset K. Adherence to antiparkinson medication in a multicenter European study. Mov. Disord. 2009;6(24) 826-832. https://doi.org/10.1002/mds.22112.
  58. Münchau A., Bhatia K.P. Pharmacological treatment of Parkinson’s disease. Postgrad Med J. 2000;76(10):602-610. https://doi.org/10.1136/ pmj.76.900.602.
  59. Pahwa R., Tanner C.M., Hause R.A. et al. Amantadine Extended Release for LevodopaInduced Dyskinesia in Parkinson’s Disease (EASED Study). Mov Disord. 2015;30(6):788795. https://doi.org/10.1002/mds.26159.
  60. Кривонос О.В., Амосова Н.А., Смоленцева И.Г. Применение антагониста глутаматных NMDA-рецепторов ПК-Мерц в остром периоде инсульта. Журнал неврологии и психиатрии им. С.С. Корсакова. 2009;4:72-74. https://doi.org/10.1007/s11055-010-9292-6.
  61. Румянцева С.А., Боневольская Н.Г. Новые направления в патогенетической терапии инсульта. Атмосфера. Нервные болезни. 2006;(4)4:29-34. Available at: https://elibrary. ru/item.asp?id=17291984.
  62. Meythaler J.M., Brunner R.C., Johnson A., Novack TA. Amantadine to improve neurorecovery in traumatic brain injury-associated diffuse axonal injury: a pilot double-blind randomized trial. Journal of Head Trauma Rehabilitation. 2002;17(4):300-313. https://doi.org/10.1097/00001199-200208000-00004.
  63. National Collaborating Centre for Chronic Conditions (UK). Parkinson’s disease: Diagnosis and management in primary and secondary care. NICE Clinical Guidelines, No. 35. London: Royal College of Physicians (UK); 2006. Available at: https://www.ncbi.nlm.nih.gov/books/NBK48513
  64. Dallos V., Heathfield K., Stone P. et al. Use of Amantadine in Parkinson’s Disease. Results of a Double-blind Trial. Br Med J. 1970;4(5726):24-6. https://doi.org/10.1136/ bmj.4.5726.24.
  65. Butzer J.F., Silver D.E., Sahs A.L. Amantadine in Parkinson’s disease. A double-blind, placebocontrolled, crossover study with long-term follow-up. Neurology. 1975;25(7):603-606. https://doi.org/10.1212/wnl.25.7.603.
  66. Fahn S., Isgreen W.P. Long-term evaluation of amantadine and levodopa combination in parkinsonism by double-blind crossover analyses. Neurology. 1975;25(8):695-700. https://doi.org/10.1212/wnl.25.8.695.
  67. Hauser R.A., Olanow C.W. Orobuccal dyskinesia associated with trihexyphenidyl therapy in a patient with Parkinson’s disease. Mov Disord. 1993;8(4):512-514. https://doi.org/10.1002/ mds.870080417.
  68. Verhagen Metman L., Del Dotto P., van den Munckhof P. et al. Amantadine as treatment for dyski-nesias and motor fluctuations in Parkinson’s disease. Neurology. 1998;50(5):1323-1326. https://doi.org/10.1212/ wnl.50.5.1323.
  69. Rajput A.H., Rajput A., Lang A.E., Kumar R., Uitti R.J., Galvez-Jimenez N. New use for an old drug: amantadine benefits L-dopa-induced dyskinesias. Mov Disord. 1998;13(5):851-854. https://doi.org/10.1002/mds.870130520.
  70. Sawada H., Oeda T. , Kuno S. Nomoto M., Yamamoto K., Yamamoto M., Hisanaga K., Kawamura T.; Amantadine Study Group. Amantadine for Dyskinesias in Parkinson’s Disease: A Randomized Controlled Trial. PLoS One. 2010;5(12):e15298. https://doi.org/10.1371/journal. pone.0015298.
  71. Thomas A., Iacono D., Luciano A.L. Armellino K., Di Iorio A., Onofrj M. Duration of amantadine benefit on dyskinesia of severe Parkinson’s disease. J Neurol Neurosurg Psychiatry. 2004;75(1):141-143. Available at: https://jnnp.bmj.com/content/75/1/141.long.
  72. Ory-Magne F., Corvol J.C., Azulay J.P. et al. Withdrawing amantadine in dyskinetic patients with Parkinson disease: the AMANDYSK trial. Neurology. 2014;(4):300-307. https://doi.org/10.1212/WNL.0000000000000050.
  73. Uitti R.J., Rajput A.H., Ahlskog J.E. et al. Amantadine treatment is an independent predictor of improved survival in Parkinson’s Disease. Neurology. 1996;(6):1551-1556. https://doi.org/10.1212/wnl.46.6.1551.
  74. Blandini F., Porter R.H., Greenamyre J.T. Glutamate and Parkinson’s disease. Mol Neurobiol. 1996;12(1):73-94. https://doi.org/10.1007/ BF02740748.
  75. Turski L., Bressler K., Rettig K.J., Löschmann P.A., Wachtel H. Protection of substantia nigra from MPP+ neurotoxicity by N-methyl-D-aspartate antagonists. Nature. 1991;349(6308):414-418. https://doi.org/10.1038/349414a0.
  76. Никонов В.В., Савицкая И.Б. Роль антагонистов глутаматных рецепторов (ПК-Мерц) в лечении повреждений мозга. Медицина неотложных состояний. 2012;(5). Available at: http://www.mif-ua.com/archive/article/34092.




Последние статьи